Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.